Part Number Hot Search : 
AN7135 VSC7709X 16220 SV6550 GL8T040 LC040 12000 F4585
Product Description
Full Text Search
 

To Download BUV48-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  switchmode  ii series npn silicon power transistors the buv48/buv48a transistors are designed for highvoltage, highspeed, power switching in inductive circuits where fall time is critical. they are particularly suited for lineoperated switchmode applications such as: ? switching regulators ? inverters ? solenoid and relay drivers ? motor controls ? deflection circuits ? fast turnoff times 60 ns inductive fall time e 25  c (typ) 120 ns inductive crossover time e 25  c (typ) ? operating temperature range 65 to +175  c ? 100  c performance specified for: reversebiased soa with inductive loads switching times with inductive loads saturation voltage leakage currents (125  c) ????????????????????????????????? ????????????????????????????????? maximum ratings ????????????????????? ????????????????????? rating ????? ????? symbol ???? ???? buv48 ???? ???? buv48a ??? ??? unit ????????????????????? ????????????????????? collectoremitter voltage ????? ????? v ceo(sus) ???? ???? 400 ???? ???? 450 ??? ??? vdc ????????????????????? ????????????????????? collectoremitter voltage (v be = 1.5 v) ????? ????? v cex ???? ???? 850 ???? ???? 1000 ??? ??? vdc ????????????????????? ????????????????????? emitter base voltage ????? ????? v eb ??????? ??????? 7 ??? ??? vdc ????????????????????? ? ??????????????????? ? ? ??????????????????? ? ????????????????????? collector current e continuous e peak (1) e overload ????? ? ??? ? ? ??? ? ????? i c i cm i oi ??????? ? ????? ? ? ????? ? ??????? 15 30 60 ??? ? ? ? ? ? ? ??? adc ????????????????????? ????????????????????? base current e continuous e peak (1) ????? ????? i b i bm ??????? ??????? 5 20 ??? ??? adc ????????????????????? ? ??????????????????? ? ? ??????????????????? ? ????????????????????? total power dissipation e t c = 25  c e t c = 100  c derate above 25  c ????? ? ??? ? ? ??? ? ????? p d ??????? ? ????? ? ? ????? ? ??????? 150 75 1 ??? ? ? ? ? ? ? ??? watts w/  c ????????????????????? ????????????????????? operating and storage junction temperature range ????? ????? t j , t stg ??????? ??????? 65 to +175 ??? ???  c ????????????????????????????????? ????????????????????????????????? thermal characteristics ????????????????????? ????????????????????? characteristic ????? ????? symbol ??????? ??????? max ??? ??? unit ????????????????????? ????????????????????? thermal resistance, junction to case ????? ????? r q jc ??????? ??????? 1 ??? ???  c/w ????????????????????? ????????????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ????? ????? t l ??????? ??????? 275 ??? ???  c (1) pulse test: pulse width = 5 ms, duty cycle  10%. on semiconductor  ? semiconductor components industries, llc, 2001 march, 2001 rev. 10 1 publication order number: buv48/d 15 amperes npn silicon power transistors 400 and 450 volts v (br)ceo 8501000 volts v (br)cex 150 watts buv48 buv48a case 340d02 to218 type
buv48 buv48a http://onsemi.com 2 ????????????????????????????????? ????????????????????????????????? electrical characteristics (t c = 25  c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ???? ???? min ??? ??? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics (1) ??????????????????? ??????????????????? collectoremitter sustaining voltage (table 1) (i c = 200 ma i b =0)l=25mh buv48 ????? ????? v ceo(sus) ???? ???? 400 ??? ??? ???? ???? ??? ??? vdc ??????????????????? ??????????????????? (i c = 200 ma, i b = 0) l = 25 mh buv48 buv48a ????? ????? ???? ???? 400 450 ??? ??? e e ???? ???? e e ??? ??? ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? collector cutoff current (v cex = rated value, v be(off) = 1.5 vdc) (v cex = rated value, v be(off) = 1.5 vdc, t c = 125  c) ????? ? ??? ? ? ??? ? ????? i cex ???? ? ?? ? ? ?? ? ???? e e ??? ? ? ? ? ? ? ??? e e ???? ? ?? ? ? ?? ? ???? 0.2 2 ??? ? ? ? ? ? ? ??? madc ??????????????????? ??????????????????? collector cutoff current (v ce = rated v cex r be =10 w )t c =25  c ????? ????? i cer ???? ???? e ??? ??? e ???? ???? 05 ??? ??? madc ??????????????????? ??????????????????? (v ce = rated v cex , r be = 10 w )t c = 25  c t c = 125  c ????? ????? ???? ???? e e ??? ??? e e ???? ???? 0.5 3 ??? ??? ??????????????????? ??????????????????? emitter cutoff current (v eb = 5 vdc, i c = 0) ????? ????? i ebo ???? ???? e ??? ??? e ???? ???? 0.1 ??? ??? madc ??????????????????? ? ????????????????? ? ??????????????????? emitterbase breakdown voltage (i e = 50 ma i c = 0) ????? ? ??? ? ????? v (br)ebo ???? ? ?? ? ???? 7 ??? ? ? ? ??? e ???? ? ?? ? ???? e ??? ? ? ? ??? vdc ????????????????????????????????? ????????????????????????????????? second breakdown ??????????????????? ??????????????????? second breakdown collector current with base forward biased ????? ????? i s/b ????????? ????????? see figure 12 ??? ??? ??????????????????? ??????????????????? clamped inductive soa with base reverse biased ????? ????? rbsoa ????????? ????????? see figure 13 ??? ??? ????????????????????????????????? ????????????????????????????????? on characteristics (1) ??????????????????? ? ????????????????? ? ??????????????????? dc current gain (i c = 10 adc, v ce = 5 vdc) buv48 (i c = 8 adc, v ce = 5 vdc) buv48a ????? ? ??? ? ????? h fe ???? ? ?? ? ???? 8 8 ??? ? ? ? ??? e e ???? ? ?? ? ???? e e ??? ? ? ? ??? ??????????????????? ? ????????????????? ? ? ????????????????? ? ? ????????????????? ? ? ????????????????? ? ??????????????????? collectoremitter saturation voltage (i c = 10 adc, i b = 2 adc) (i c = 15 adc, i b = 3 adc) buv48 (i c = 10 adc, i b = 2 adc, t c = 100  c) (i c = 8 adc, i b = 1.6 adc) (i c = 12 adc, i b = 2.4 adc) buv48a (i c = 8 adc, i b = 1.6 adc, t c = 100  c) ????? ? ??? ? ? ??? ? ? ??? ? ? ??? ? ????? v ce(sat) ???? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ???? e e e e e e ??? ? ? ? ? ? ? ? ? ? ? ? ? ??? e e e e e e ???? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ???? 1.5 5 2 1.5 5 2 ??? ? ? ? ? ? ? ? ? ? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ? ????????????????? ? ? ????????????????? ? ??????????????????? baseemitter saturation voltage (i c = 10 adc, i b = 2 adc) buv48 (i c = 10 adc, i b = 2 adc, t c = 100  c) (i c = 8 adc, i b = 1.6 adc) buv48a (i c = 8 adc, i b = 1.6 adc, t c = 100  c) ????? ? ??? ? ? ??? ? ? ??? ? ????? v be(sat) ???? ? ?? ? ? ?? ? ? ?? ? ???? e e e e ??? ? ? ? ? ? ? ? ? ? ??? e e e e ???? ? ?? ? ? ?? ? ? ?? ? ???? 1.6 1.6 1.6 1.6 ??? ? ? ? ? ? ? ? ? ? ??? vdc ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ? ????????????????? ? output capacitance (v cb = 10 vdc, i e = 0, f test = 1 mhz) ????? ? ??? ? c ob ???? ? ?? ? e ??? ? ? ? e ???? ? ?? ? 350 ??? ? ? ? pf ????????????????????????????????? ? ??????????????????????????????? ? ????????????????????????????????? switching characteristics resistive load (table 1) ?????? ?????? delay time ?????????????? ?????????????? i =10a i = 2 a buv48 ????? ????? t d ???? ???? e ??? ??? 0.1 ???? ???? 0.2 ??? ??? m s ?????? ?????? rise time ?????????????? ?????????????? i c = 10 a, i b , = 2 a buv48 i c = 8 a, i b , = 1.6 a buv48a ????? ????? t r ???? ???? e ??? ??? 0.4 ???? ???? 0.7 ??? ??? ?????? ?????? storage time ?????????????? ?????????????? i c = 8 a , i b , = 1 . 6 a buv48a duty cycle  2%, v be(off) = 5 v t =30 m sv cc = 300 v ????? ????? t s ???? ???? e ??? ??? 1.3 ???? ???? 2 ??? ??? ?????? ?????? fall time ?????????????? ?????????????? t p = 30 m s, v cc = 300 v ????? ????? t f ???? ???? e ??? ??? 0.2 ???? ???? 0.4 ??? ??? ????????????????????????????????? ????????????????????????????????? inductive load, clamped (table 1) ?????? ?????? storage time ?????????? ?????????? ????? ????? (t =25  c) ????? ????? t sv ???? ???? e ??? ??? 1.3 ???? ???? e ??? ??? m s ?????? ?????? fall time ?????????? ?????????? i c = 10 a buv48 i b1 = 2a ????? ????? (t c = 25  c) ????? ????? t fi ???? ???? e ??? ??? 0.06 ???? ???? e ??? ??? ?????? ?????? storage time ?????????? ?????????? i b1 = 2 a i 8 a buv48a ????? ????? ????? ????? t sv ???? ???? e ??? ??? 1.5 ???? ???? 2.5 ??? ??? ?????? ?????? crossover time ?????????? ?????????? i c = 8 a buv48a i b1 = 1.6 a ????? ????? (t c = 100  c) ????? ????? t c ???? ???? e ??? ??? 0.3 ???? ???? 0.6 ??? ??? ?????? ?????? fall time ?????????? ?????????? i b1 = 1 . 6 a ????? ????? ????? ????? t fi ???? ???? e ??? ??? 0.17 ???? ???? 0.35 ??? ??? (1) pulse test: pulse width = 300 m s, duty cycle  2%. vcl = 300 v, v be(off) = 5 v, lc = 180 m h
buv48 buv48a http://onsemi.com 3 dc characteristics , collector current (a) m i c v be , base-emitter voltage (volts) v ce , collector-emitter voltage (volts) v ce , collector-emitter voltage (volts) 0.1 i c , collector current (amps) 0.3 3 2 1 0.7 0.5 5 i c , collector current (amps) 3 2 1 0.7 0.5 0.3 0.2 0.3 i c = 5 a 50 1 figure 1. dc current gain i c , collector current (amps) 1 2 3 5 8 10 20 30 50 20 10 7 figure 2. collector saturation region 0.1 i b , base current (amps) 0.1 0.3 0.5 3 0.5 0.3 30 h fe , dc current gain 5 3 2 v ce = 5 v t j = 150 c 1234 figure 3. collectoremitter saturation voltage 10 1 1 2 3 7 10 50 20 30 5 figure 4. baseemitter voltage figure 5. collector cutoff region 10 5 1 -0.4 figure 6. capacitance v be , base-emitter voltage (volts) 10 -1 -0.2 0 0.2 0.4 0.6 10 k 1 v r , reverse voltage (volts) 10 10 1 k 10 0 100 1000 100 forward 0.1 v ce = 250 v 125 c 90% 75 c 7.5 a t j = 100 c reverse 10 1 10 2 10 3 10 4 c ob b f = 5 25 c 10% t c = 25 c 10 a 15 a 90% 10% t j = 25 c b f = 5 100 c c, capacitance (pf) c ib t j = 25 c
buv48 buv48a http://onsemi.com 4 table 1. test conditions for dynamic performance v ceo(sus) rbsoa and inductive switching resistive switching input conditions circuit values test circuits 20 1 0 pw varied to attain i c = 200 ma l coil = 25 mh, v cc = 10 v r coil = 0.7 w l coil = 180 m h r coil = 0.05 w v cc = 20 v v cc = 300 v r l = 83 w pulse width = 10 m s inductive test circuit turnon time i b1 adjusted to obtain the forced h fe desired turnoff time use inductive switching driver as the input to the resistive test circuit. t 1 adjusted to obtain i c test equipment scope e tektronix 475 or equivalent resistive test circuit output waveforms 2 i b1 1 2 v clamp = 300 v r b adjusted to attain desired i b1 +10 v 220 100 680 pf 100 pulses d = 3% 33 2 w 33 2 w 160 d1 22 m f d3 22 680 pf mm3735 1n4934 d1d2d3d4 2n3763 160 680 pf 22 d4 0.22 m f d3 2n6438 +10 v mr854 0.1 m f 2n6339 mr854 i b1 adjust dt b adjust dt i b2 adjust v cc 1 input 2 r coil l coil v cc v clamp rs = 0.1 w 1n4937 or equivalent tut see above for detailed conditions t 1 i c v ce i c(pk) t f clamped t f t t t 2 time v ce or v clamp t 1 l coil (i c pk ) v cc t 2 l coil (i c pk ) v clamp 1 2 tut r l v cc t rv v be(off) , base-emitter voltage (volts) time figure 7. inductive switching measurements figure 8. peakreverse current 12 34 5 6 10 8 6 4 2 0 , base current (amps) i b2(pk) 0 b f = 5 i c = 10 a i c v ce 90% i b1 t sv i c pk v ce(pk) 90% v ce(pk) 90% i c(pk) 10% v ce(pk) 10% i c pk 2% i c i b t fi t ti t c
buv48 buv48a http://onsemi.com 5 switching times note in resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. however, for inductive loads which are common to switchmode power supplies and hammer drivers, current and voltage waveforms are not in phase. therefore, separate measurements must be made on each waveform to determine the total switching time. for this reason, the following new terms have been defined. t sv = voltage storage time, 90% i b1 to 10% v clamp t rv = voltage rise time, 1090% v clamp t fi = current fall time, 9010% i c t ti = current tail, 102% i c t c = crossover time, 10% v clamp to 10% i c an enlarged portion of the inductive switching waveforms is shown in figure 7 to aid in the visual identity of these terms. for the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from an222: p swt = 1/2 v cc i c (t c ) f in general, t rv + t fi  t c . however, at lower test currents this relationship may not be valid. as is common with most switching transistors, resistive switching is specified at 25  c and has become a benchmark for designers. however, for designers of high frequency converter circuits, the user oriented specifications which make this a aswitchmodeo transistor are the inductive switching speeds (t c and t sv ) which are guaranteed at 100  c. 1 figure 9. storage time, t sv i c , collector current (amps) 25 0.1 figure 10. crossover and fall times 5 3 1 0.7 0.5 50 i c , collector current (amps) 37 0 figure 11. turnoff times versus forced gain b f , forced gain 0.01 12 45 2 0.5 0.3 0.2 figure 12. turnoff times versus ib 2 /ib 1 ib 2 /ib 1 3 1 0.1 3 t c = 100 c t c = 25 c i c = 10 a v be(off) = 5 v 0.01 1 0.5 0.2 0.3 0.1 t, time (s) m 2 0.3 0.2 20 10 30 b f = 5 t c = 25 c t, time (s) m 0.05 0.02 0.03 12 5 50 37 20 10 30 b f = 5 t c = 100 c t c = 25 c t c t fi 0.05 0.03 0.02 689 710 t sv t fi t c t, time (s) m t, time (s) m 0.01 2 0.5 0.3 0.2 3 1 0.1 0.05 0.03 0.02 01 2 4 5 3689 710 t c = 25 c i c = 10 a b f = 5 v t sv t fi t c t c = 100 c t c = 25 c inductive switching
buv48 buv48a http://onsemi.com 6 the safe operating area figures shown in figures 12 and 13 are specified for these devices under the test conditions shown. 1 figure 13. forward bias safe operating area v ce , collector-emitter voltage (volts) 550 0.01 30 10 2 1 5 0.5 1000 10 100 0 figure 14. reverse bias safe operating area v ce , collector-emitter voltage (volts) 0 200 400 40 20 50 600 t c = 25 c t c = 100 c i c /i b 5 i c , collector current (amps) 0.1 200 dc 1 ms i c , collector current (amps) t r 0.7 m s limit only for turn on 2 20 500 30 10 0.2 0.05 0.02 800 1000 v be(off) = 5 v buv48 buv48a safe operating area information forward bias there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 13 is based on t c = 25  c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c  25  c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 13 may be found at any case temperature by using the appropriate curve on figure 15. t j(pk) may be calculated from the data in figure 11. at high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. reverse bias for inductive loads, high voltage and high current must be sustained simultaneously during turnoff, in most cases, with the base to emitter junction reverse biased. under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. this can be accomplished by several means such as active clamping, rc snubbing, load line shaping, etc. the safe level for these devices is specified as reverse bias safe operating area and represents the voltage current conditions during reverse biased turnoff. this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 14 gives rbsoa characteristics. 0 figure 15. power derating t c , case temperature ( c) 0 40 80 80 40 100 120 power derating factor (%) 160 200 60 20 second breakdown derating thermal derating
buv48 buv48a http://onsemi.com 7 t, time (ms) 1 0.01 0.02 0.5 0.2 0.1 0.05 0.02 r(t), effective transient thermal 0.05 1 2 5 10 20 50 100 200 500 r q jc (t) = r(t) r q jc q jc = 1 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 d = 0.5 0.2 0.05 0.01 single pulse 0.1 0.1 0.5 0.2 resistance (normalized) 1000 2000 figure 16. thermal response 0.02 overload characteristics 0 figure 17. rated overload safe operating area (olsoa) v ce , collector-emitter voltage (volts) 300 100 40 60 500 100 400 t c = 25 c i c , collector current (amps) 450 200 20 t p = 10 m s buv48 buv48a 80 olsoa olsoa applies when maximum collector current is limited and known. a good example is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. if the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known. maximum allowable collectoremitter voltage versus collector current is plotted for several pulse widths. (pulse width is defined as the time lag between the fault condition and the removal of base drive.) storage time of the transistor has been factored into the curve. therefore, with bus voltage and maximum collector current known, figure 17 defines the maximum time which can be allowed for fault detection and shutdown of base drive. olsoa is measured in a commonbase circuit (figure 19) which allows precise definition of collectoremitter voltage and collector current. this is the same circuit that is used to measure forwardbias safe operating area. 0 figure 18. i c = f(dv/dt) dv/dt (kv/ m s) 24 4 2 5 6810 3 1 i c (amp) 500 m f 500 v v ee v cc figure 19. overload soa test circuit notes: ? v ce = v cc + v be ? adjust pulsed current source for desired i c , t p r be = 100 w r be = 10 w r be = 2.2 w r be = 0
buv48 buv48a http://onsemi.com 8 package dimensions case 340d02 issue b sot93 (to218) notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. a d v g k s l u b q e c j h dim min max min max inches millimeters a --- 20.35 --- 0.801 b 14.70 15.20 0.579 0.598 c 4.70 4.90 0.185 0.193 d 1.10 1.30 0.043 0.051 e 1.17 1.37 0.046 0.054 g 5.40 5.55 0.213 0.219 h 2.00 3.00 0.079 0.118 j 0.50 0.78 0.020 0.031 k 31.00 ref 1.220 ref l --- 16.20 --- 0.638 q 4.00 4.10 0.158 0.161 s 17.80 18.20 0.701 0.717 u 4.00 ref 0.157 ref v 1.75 ref 0.069 123 4 on semiconductor and are trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to make changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scill c data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. publication ordering information central/south america: spanish phone : 3033087143 (monfri 8:00am to 5:00pm mst) email : onlitspanish@hibbertco.com tollfree from mexico: dial 018002882872 for access then dial 8662979322 asia/pacific : ldc for on semiconductor asia support phone : 13036752121 (tuefri 9:00am to 1:00pm, hong kong time) toll free from hong kong & singapore: 00180044223781 email : onlitasia@hibbertco.com japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. buv48/d switchmode is a registered trademark of semiconductor components industries, llc (scillc) north america literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com fax response line: 3036752167 or 8003443810 toll free usa/canada n. american technical support : 8002829855 toll free usa/canada europe: ldc for on semiconductor european support german phone : (+1) 3033087140 (monfri 2:30pm to 7:00pm cet) email : onlitgerman@hibbertco.com french phone : (+1) 3033087141 (monfri 2:00pm to 7:00pm cet) email : onlitfrench@hibbertco.com english phone : (+1) 3033087142 (monfri 12:00pm to 5:00pm gmt) email : onlit@hibbertco.com european tollfree access*: 0080044223781 *available from germany, france, italy, uk, ireland


▲Up To Search▲   

 
Price & Availability of BUV48-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X